Aerosol-spray diverse mesoporous metal oxides from metal nitrates

نویسندگان

  • Long Kuai
  • Junxin Wang
  • Tian Ming
  • Caihong Fang
  • Zhenhua Sun
  • Baoyou Geng
  • Jianfang Wang
چکیده

Transition metal oxides are widely used in solar cells, batteries, transistors, memories, transparent conductive electrodes, photocatalysts, gas sensors, supercapacitors, and smart windows. In many of these applications, large surface areas and pore volumes can enhance molecular adsorption, facilitate ion transfer, and increase interfacial areas; the formation of complex oxides (mixed, doped, multimetallic oxides and oxide-based hybrids) can alter electronic band structures, modify/enhance charge carrier concentrations/separation, and introduce desired functionalities. A general synthetic approach to diverse mesoporous metal oxides is therefore very attractive. Here we describe a powerful aerosol-spray method for synthesizing various mesoporous metal oxides from low-cost nitrate salts. During spray, thermal heating of precursor droplets drives solvent evaporation and induces surfactant-directed formation of mesostructures, nitrate decomposition and oxide cross-linking. Thirteen types of monometallic oxides and four groups of complex ones are successfully produced, with mesoporous iron oxide microspheres demonstrated for photocatalytic oxygen evolution and gas sensing with superior performances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of Mesoporous Metal Oxides by Structure Replication: Thermal Analysis of Metal Nitrates in Porous Carbon Matrices

A variety of metal nitrates were filled into the pores of an ordered mesoporous CMK-3 carbon matrix by solution-based impregnation. Thermal conversion of the metal nitrates into the respective metal oxides, and subsequent removal of the carbon matrix by thermal combustion, provides a versatile means to prepare mesoporous metal oxides (so-called nanocasting). This study aims to monitor the therm...

متن کامل

Facile synthesis and characterization of novel mesoporous and mesorelief oxides with gyroidal structures.

In this paper, we bring forward an effective strategy, solvothermal postsynthesis, to prepare ordered mesoporous silica materials with highly branched channels. Structural characterizations indicate that the titled mesoporous materials basically have the cubic double gyroidal (space group Ia-3d) structure with small fraction of distortions. The mesopore sizes and surface areas can be up to 8.8 ...

متن کامل

Mesoporous crystalline-amorphous oxide nanocomposite network for high-performance lithium storage.

Mesoporous nanocomposites composed of crystalline and amorphous oxides network were successfully synthesized by a continuous aerosol spray process; electrodes made from such nanocomposites with a thin-layer of protective oxide coating exhibit high capacity and long cycling life for lithium storage.

متن کامل

Ordered Mesoporous Nanomaterials

The Special Issue of Nanomaterials "Ordered Mesoporous Nanomaterials" covers novel synthetic aspects of mesoporous materials and explores their use in diverse areas like drug delivery, photocatalysis, filtration or electrocatalysis. The range of materials tackled includes metals and alloys, aluminosilicates, silica, alumina and transition metal oxides. The variety of materials, synthetic approa...

متن کامل

Mesoporous Transition Metal Oxides for Supercapacitors

Recently, transition metal oxides, such as ruthenium oxide (RuO₂), manganese dioxide (MnO₂), nickel oxides (NiO) and cobalt oxide (Co₃O₄), have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015